The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides.
نویسندگان
چکیده
The widely accepted model to explain the positive inotropic effect of cardiac glycosides invokes altered Na+-Ca2+ exchange activity secondary to Na+ pump inhibition. However, proof of this model is lacking and alternative mechanisms have been proposed. We directly tested the role of the Na+-Ca2+ exchanger in the action of the glycoside ouabain using Na+-Ca2+ exchanger knockout mice. Ablation of the exchanger is embryonic lethal, but contractility can be studied in embryonic heart tubes at day 9.5 postcoitum. Heart tubes isolated from homozygous Na+-Ca2+ exchanger knockout mice (NCX-/-) display surprisingly normal Ca2+ transients. Removal of extracellular Na+ induces Ca2+ overload in wild-type heart tubes but does not alter the Ca2+ transients of NCX-/- heart tubes. Similarly, ouabain, at levels causing Ca2+ overload in wild-type heart tubes, has no effect on NCX-/- heart tubes. We conclude that in embryonic mouse myocytes the Na+-Ca2+ exchanger is absolutely required for the effect of cardiac glycosides on Ca2+(i).
منابع مشابه
Inhibiting Na+/K+ ATPase Can Impair Mitochondrial Energetics and Induce Abnormal Ca2+ Cycling and Automaticity in Guinea Pig Cardiomyocytes
Cardiac glycosides have been used for the treatment of heart failure because of their capabilities of inhibiting Na+/K+ ATPase (NKA), which raises [Na+]i and attenuates Ca2+ extrusion via the Na+/Ca2+ exchanger (NCX), causing [Ca2+]i elevation. The resulting [Ca2+]i accumulation further enhances Ca2+-induced Ca2+ release, generating the positive inotropic effect. However, cardiac glycosides hav...
متن کاملThe Na -Ca Exchanger Is Essential for the Action of Cardiac Glycosides
The widely accepted model to explain the positive inotropic effect of cardiac glycosides invokes altered Na -Ca exchange activity secondary to Na pump inhibition. However, proof of this model is lacking and alternative mechanisms have been proposed. We directly tested the role of the Na -Ca exchanger in the action of the glycoside ouabain using Na -Ca exchanger knockout mice. Ablation of the ex...
متن کاملSodium/calcium exchange: its physiological implications.
The Na+/Ca2+ exchanger, an ion transport protein, is expressed in the plasma membrane (PM) of virtually all animal cells. It extrudes Ca2+ in parallel with the PM ATP-driven Ca2+ pump. As a reversible transporter, it also mediates Ca2+ entry in parallel with various ion channels. The energy for net Ca2+ transport by the Na+/Ca2+ exchanger and its direction depend on the Na+, Ca2+, and K+ gradie...
متن کاملThe role of Na-Ca exchange current in the cardiac action potential.
Since 1981, when Mullins published his provocative book proposing that the Na-Ca exchanger is electrogenic, it has been shown, first by computer simulation by Noble and later by experiment by various investigators, that inward iNaCa triggered by the Ca2+ transient is responsible for the low plateau of the atrial action potential and contributes to the high plateau of the ventricular action pote...
متن کاملVascular Na+/Ca2+ exchanger: implications for the pathogenesis and therapy of salt-dependent hypertension.
The Na+/Ca2+ exchanger is an ion transporter that exchanges Na+ and Ca2+ in either Ca2+ efflux or Ca2+ influx mode, depending on membrane potential and transmembrane ion gradients. In arterial smooth muscle cells, the Na+/Ca2+ exchanger is thought to participate in the maintenance of vascular tone by regulating cytosolic Ca2+ concentration. Recent pharmacological and genetic engineering studies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 90 3 شماره
صفحات -
تاریخ انتشار 2002